11 research outputs found

    Cellular neural networks, Navier-Stokes equation and microarray image reconstruction

    Get PDF
    Copyright @ 2011 IEEE.Although the last decade has witnessed a great deal of improvements achieved for the microarray technology, many major developments in all the main stages of this technology, including image processing, are still needed. Some hardware implementations of microarray image processing have been proposed in the literature and proved to be promising alternatives to the currently available software systems. However, the main drawback of those proposed approaches is the unsuitable addressing of the quantification of the gene spot in a realistic way without any assumption about the image surface. Our aim in this paper is to present a new image-reconstruction algorithm using the cellular neural network that solves the Navier–Stokes equation. This algorithm offers a robust method for estimating the background signal within the gene-spot region. The MATCNN toolbox for Matlab is used to test the proposed method. Quantitative comparisons are carried out, i.e., in terms of objective criteria, between our approach and some other available methods. It is shown that the proposed algorithm gives highly accurate and realistic measurements in a fully automated manner within a remarkably efficient time

    A multi-view approach to cDNA micro-array analysis

    Get PDF
    The official published version can be obtained from the link below.Microarray has emerged as a powerful technology that enables biologists to study thousands of genes simultaneously, therefore, to obtain a better understanding of the gene interaction and regulation mechanisms. This paper is concerned with improving the processes involved in the analysis of microarray image data. The main focus is to clarify an image's feature space in an unsupervised manner. In this paper, the Image Transformation Engine (ITE), combined with different filters, is investigated. The proposed methods are applied to a set of real-world cDNA images. The MatCNN toolbox is used during the segmentation process. Quantitative comparisons between different filters are carried out. It is shown that the CLD filter is the best one to be applied with the ITE.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Science Foundation of China under Innovative Grant 70621001, Chinese Academy of Sciences under Innovative Group Overseas Partnership Grant, the BHP Billiton Cooperation of Australia Grant, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050 and the Alexander von Humboldt Foundation of Germany

    Deep belief networks for quantitative analysis of a gold immunochromatographic strip

    Get PDF
    Gold immunochromatographic strip (GICS) has become a popular membrane-based diagnostic tool in a variety of settings due to its sensitivity, simplicity and rapidness. This paper aimed to develop a framework of automatic image inspection to further improve the sensitivity as well as the quantitative performance of the GICS systems. As one of the latest methodologies in machine learning, the deep belief network (DBN) is applied, for the first time, to quantitative analysis of GICS images with hope to segment the test and control lines with a high accuracy. It is remarkable that the exploited DBN is capable of simultaneously learning three proposed features including intensity, distance and difference to distinguish the test and control lines from the region of interest that are obtained by preprocessing the GICS images. Several indices are proposed to evaluate the proposed method. The experiment results show the feasibility and effectiveness of the DBN in the sense that it provides a robust image processing methodology for quantitative analysis of GICS.This work was supported in part by the Natural Science Foundation of China under Grant 61403319, in part by the Fujian Natural Science Foundation under Grant 2015J05131, in part by the Fujian Provincial Key Laboratory of Eco-Industrial Green Technology and in part by the Fundamental Research Funds for the Central Universities
    corecore